

Figure 1: PUR Air Purger General Layout

The general layout of the Phillips PUR Purger and all relevant components are shown in Figure 1.

Description of positions

1) Liquid feed – The Air Purger can be fed by either high pressure liquid, pumped or gravity fed. If the Purger is fed using high pressure liquid (as shown), a ½" SW solenoid is installed with a 0.047" (1.2mm) stainless steel orifice screw installed in the bottom of the solenoid. If the Purger is fed using pumped liquid, ½" SW solenoid is installed. If installed on a gravity fed system, the Purger will be provided with ½" SW housing with no orifice installed.

NOTE: for installations on gravity systems the Purger should be mounted a minimum of 20" (500mm) lower than the lowest liquid level in the separator feeding it in order to ensure sufficient gravity feed.

- 2) Solenoid valve with built in orifice: Danfoss EVM pilot solenoid valve, with orifice bolt with 0.035" [0.9mm] diameter orifice hole screwed into the bottom and mounted in a Phillips solenoid fitting. Function: Air purger on/off valve. This solenoid valve will start the air purger when it opens and stop the purger when it closes. The orifice bolt with 0.035" [0.9mm] diameter hole functions as an expansion valve for return of condensed liquid to the suction side of the refrigeration system. Once the solenoid valve opens, the condensed and subcooled liquid in the purger separation chamber is drained back through the built-in orifice to the purger external chamber. When the separation chamber is drained of condensed liquid, new refrigerant/non-condensable gas is drawn into the purger for separation. Regulation: The solenoid is only allowed to open when there is an open connection to a purge point. Note: This is very important. The solenoid valve (pos. 3) must not open unless a purge point is open. Otherwise, the purger will drain the separation chamber of liquid without being able to draw in new gas to condense, resulting in an unintended release of refrigerant gas from the air purge line.
- 3) Solenoid valve with built in orifice: Danfoss EVM pilot solenoid valve, with orifice bolt with 0.04" [1.0mm] diameter orifice hole mounted in a Danfoss CVH pilot valve housing.
 Function: The solenoid allows air purging. The solenoid opens when the liquid level in the separation chamber is depressed below the lowest switch point of the level probe by the presence of non-condensables above the liquid surface. The solenoid valve closes again when enough air has been purged to allow the liquid level to reach the upper switch point on the level probe.
 Regulation: When solenoid (pos. 3) is "on" (air purger running) and level probe (pos. 8) indicates low level, this solenoid valve (pos. 6) opens. This solenoid valve is kept open until level probe (pos. 8) indicates a high level, as long as the air purger is running (solenoid pos. 6 is on).
 Note: A purger smart controls have an included counter that tracks the minutes each purge solenoid has been open. Using this information, the estimated amount of air purged from the system is calculated and available in the time purged parameter.

 Capacitive liquid level probe: HB Products HBLC special calibrated level control rod with two pre-set switch points, one for low level and one for high level.
 Function: When the volume of non-condensables (air) in the separator chamber increases, it will

displace the volume of condensed refrigerant in the separation chamber and the liquid level will drop. When the level drops below the lowest switch point on the level probe (pos. 8), the air purge solenoid (pos. 6) opens and the non-condensables purge at condensing pressure through the purge solenoid and its built-in orifice (pos. 6). When the liquid level reaches the upper switch point on the level probe (pos. 8) the air purge solenoid (pos. 6) closes.

Regulation: When the solenoid (pos. 3) is "on" (air purger active) and the level probe (pos. 8) indicates low liquid level, then the air purge solenoid (pos. 6) opens and is kept open until the level probe (pos. 8) indicate a high liquid level.

5) Air vent: Armstrong air vent type 11AV

Function: The air vent is an extra safety against liquid refrigerant release in the event of controls, electrical or mechanical problems. The air vent acts as a float valve that will only allow vapor to pass. Since the air vent has a metallic seal, it will not be able to close completely tight, so in the event of a major malfunction of the air purger it can be observed through a very small discharge of refrigerant (gas) through this vent.

- 6) Check Valve: Danfoss NRVA 15 or similar Function: The check valve ensures that ambient air or water from a bubbler is not drawn into the purger in the event of a malfunction where the air purger pressure drops below atmospheric pressure.
- Stop valve: Danfoss SVA15 or similar
 Function: Stop valve service of the solenoid and check valve.
- 8) Relief Valve: Cyrus Shank 800D relief valve set at 250 PSI.
 Function: Safety relief valve to relieve pressure if it were to exceed 250 PSI
- 9) **Temperature Sensors:** Danfoss temperature sensors

Function: The temperature sensors make sure the difference between the suction and condensing temperature is a minimum 24°F [13°C]. The temperature sensors will work with the delay timer to make sure the temperature difference is met. If that difference is not met during operation, the vent solenoid (pos. 6) will not be allowed to open, preventing any non-condensables from being vented. Temperature sensors are mounted on the wet suction piping and foul gas inlet.

10) Liquid Feed and Foul Gas Strainer: Danfoss FIA 15 or Similar

Function: The two strainers are used to prevent the small liquid feed and foul gas orifices from clogging. The strainer insert is 250 microns [72 mesh], that is sized small enough that it will catch any debris large enough to clog the orifices during normal operation. If these orifices are clogged the unit will not function properly. Both strainers ship loose.

11) Wet Suction Line:

Function: Return liquid to low temp accumulator or other low side vessel. Factory piped with elbow and tee for relief valve. Relief valve ships loose.

12) Oil Drain: Danfoss SVA15 and QDV15 or similar

Function: Stop valve for oil draining

Note: The costumer/user should supply and mount a stop valve and quick closing "deadman" valve, (such as a Danfoss QDV, valve train) according to the local rules and regulations where the purger is mounted.

13) Bubbler (Optional)

Function: Absorption of any ammonia gas that might be purged with the non-condensable gases. Bubbles that pass through the water to the surface are non-condensable, while bubbles that disappear in the water will be ammonia gas. The water supply should be run whenever the air purge solenoid is energized.

Note: This bubbler is an optional supply item.

Note: The user must make sure that a minimum of 1 GPM of water is being pumped through the bubbler per every 1 lb. of vent gas.

Note: The ammonia content in the purged air will depend on the difference between the saturated condensing temperature and the saturated evaporating temperature. A large difference will result in a very low content of ammonia, while a low difference will result in a somewhat higher content. For this reason, the purger is limited to temperature differences above 24°F [13°C].

14) Complete control of the air purger. (Optional)

The Phillip's Purger controls are offered in the PUR-3, PUR-10, and PUR-30 control panels, and offer 3, 10, and 30 purge points, respectively. The controls utilize the Danfoss MCX programmable control platform. Using this platform integrated with the temperature sensors and level probe the controls open and close the vent solenoid allowing purging to take place. The sensors also control the sequencing of the purge point solenoids, water solenoid, liquid feed solenoid, and expansion solenoid as needed. The smart controls allow the setting of different purge point times for each purge point as well as different time schedules for purger operation throughout the day. A smart detect feature is implemented into the controls that automatically skip a purge point if it has not seen a significant increase in air/non-condensables over a user defined time period. RS485 communication capabilities are included.

15) Bubbler water solenoid: Customer Supplied

Function: The user must supply a water solenoid that can supply at least 1 GPM of water per 1 lb. of vent gas and connect to the water bubbler inlet connection. The water connection on the bubbler is a ³/₄" hose fitting.

Capacity and Performance

The heat exchanger in the air purger has a design refrigerant condensing capacity of 2.85TR [10kW], however, the actual air purging capacity is dependent on the amount of non-condensable gases in the condenser. The low-pressure side connected to the air purger needs to be able to deliver the 2.85 TR [10kW] capacity. On the high-pressure side, the air purger draws refrigerant gas and non-condensable gases into the purger with 2.85TR [10kW] capacity, ensuring that the purger gets the maximum volume of non-condensable gases during operation. Due to its high capacity, it is recommended that on small systems the purger is only run for a short period of time each day once the general level of non-condensable gases have been brought down to a low level. One hour once or twice a day is often appropriate for small systems.

It is recommended to compare the time the air purger is in operation with the time it vents. If the purger vents during most of the time in operation, it will most likely be possible to get more air out by increasing the operating time. On the other hand, if the air purger vents for a small portion of the operating time, it is recommended to decrease the operation time, thereby saving the 2.85 TR [10kW] of heat load.

Once the air purger gains access to large pockets of air its capacity will be very large and not limited to the condensing capacity of the coil, as illustrated in diagram below.

Figure 2 outlines the amount of air purged per hour from the purger as a function of the condensing pressure. The dashed curve shows the volumetric flow of purged air out of the air purger at condensing pressure while the solid curve illustrates the volume flow out of the air purger (atmospheric pressure). By using the solid curve, the total volume of the purged air at atmospheric pressure can be determined. This shows how much air that came into the refrigeration system.

By using the dashed curve, the total volume of the purged air at condensing pressure can be determined. This shows how much space (volume) the purged air had occupied in the condenser/receiver and can give an idea about how much less condensing capacity the system would have if the air was not purged out of the system.

By using Figure 2 the purged volume of air can be calculated from the total time the purge solenoid valve has been opened.

Example:

If the purge solenoid valve has been open 10.25 seconds and the average condensing temperature has been 72°F [22°C], the purged volume will be: $\frac{10.25 s}{60 s/min} = 0.1708 min$

Volume at condensing pressure (dashed curve):

$$0.188 \frac{ft^3}{min} \ge 0.0321 ft^3 \qquad \qquad 0.00531 \frac{m^3}{min} \ge 0.0708 \min = 0.0009 m^3$$

Volume at atmospheric pressure (solid curve):

$$2.443 \frac{ft^3}{min} \times 0.1708 \min = 0.417 ft^3$$

$$0.06917 \ \frac{m^3}{\min} \ x \ 0.1708 \ \min = 0.0118 \ m^3$$

Figure 2: Purger Capacity

Safety

- It is the costumers/user's responsibility to connect the air purger to a safety valve system in accordance with local rules and regulations.
- The costumer/user must mount a quick closing drain valve on the oil drain in accordance with local rules and regulations.
- The costumer/user must ensure that the air purger cannot be activated without access to an open purge point. If this condition is not met it can result in refrigerant in the purge line.
- It is not possible to trap liquid in the air purger as the solenoid valves can open backwards allowing liquid to escape.

Note:

It is recommended to check the refrigeration system's water content on the low-pressure side. When air is found in the system, it is certain that moisture is also in the system. As with air, water is a pollutant of the system with serious consequences for the system capacity, power consumption, efficiency and maintenance cost.

H.A. Phillips & Co. 770 Enterprise Avenue DeKalb, Illinois 60115 • U.S.A. Phone: (630) 377 - 0050 Email: info@haphillips.com, or visit us at www.haphillips.com

